请选择 进入手机版 | 继续访问电脑版
 找回密码
 立即注册
首页 社区 AI 数据分析的基本步骤有哪些?

数据分析的基本步骤有哪些?

猿梦 2022-12-30 15:35:03
1.分析设计首先是明确数据分析目的,只有明确目的,数据分析才不会偏离方向,否则得出的数据分析结果不仅没有指导意义,亦即目的引导。2.数据收集数据收集是按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。这里的数据包括一手数据与二手数据,一手数据主要指可直接获取的数据。3.数据处理数据处理是指对采集到的数据进行加工整理,形成适合数据分析的样式,保证数据的一致性和有效性。它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、可能杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据。4.数据分析数据分析是指用适当的分析方法及工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。在确定数据分析思路阶段,数据分析师就应当为需要分析的内容确定适合的数据分析方法。到了这个阶段,就能够驾驭数据,从容地进行分析和研究了。5.数据展现通过数据分析,隐藏在数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然呢?一般情况下,数据是通过表格和图形的方式来呈现的,即用图表说话。6. 报告撰写数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,以供决策者参考。
鄙人丁幻丝撞翻#椅子孟谷蓝抹掉痕迹*付费内容限时免费查看回答1、业务理解最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将这个只是转化为数据挖掘问题的定义和完成目标的初步计划。2、数据理解数据理解阶段从初始数据收集开始,通过一些活动的处理,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起兴趣的子集去形成隐含信息的假设3、数据准备数据准备阶段包括从未处理数据中构造最终数据集的所有活动。这些数据将是模型工具的输入值。这个阶段的任务有可能执行多次,没有任何规定的顺序。任务包括表、记录和属性的选择,以及为模型工具转换和清洗数据。4、建模在这个阶段,可以选择和应用不同模型技术,模型参数被调整到最佳的数值。一般,有些技术可以解决一类相同的数据挖掘问题。有些技术在数据形成上有特殊要求,因此需要经常跳回到数据准备阶段5、评估到项目的这个阶段,你已经从数据分析的角度建立了一个高质量显示的模型。在开始最后部署模型之前,重要的事情是彻底的评估模型,检查构造模型的步骤,确保模型可以完成业务目标。这个阶段的关键目的是确定是否有重要业务问题没有被充分考虑。在这个阶段结束后,一个数据挖掘结果使用的决定必须达成6、部署通常,模型的创建不是项目的结束。模型的作用是从带护具中找到知识,获得的知识需要便于用户使用的方式重新组织和展现。根据需求,这个阶段可以产生简单的报告,或是实现一个比较复杂的、可重复的数据挖掘过程。在很多案例中,这个阶段是由客户而不是数据分析人员承担部署的工作。

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册